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Although this  involves a lot of labour, the  solution 
thereafter  is simple, for the deconvolution of the 
Pat terson (or the autocorrelation funct ion of the struc- 
ture) is straightforward,  using vector shift  methods 
(Buerger, 1951). In  fact, if a single peak is present 
in  the Patterson,  then  even a single shift  of the origin 
to this  peak is sufficient to extract  the structure, for 
the coincident peaks would give the structure straight- 
way, bu t  for a duplicat ion by  inversion at  the mid- 
point  of the  shift  vector. (A detailed theory of the 
superposition methods will be presented elsewhere). 
Chance coincidences can be e l iminated by  making  
more t han  one vector shift, and the same thing holds 
for the extra  coincidences which occur when shift ing 
to a double peak. In  any  case, if the peak positions are 
accurately known, then  these operations can be made  
algebraically, and techniques can be developed for 
mechanis ing them. 

The essential point  is that ,  in this  technique,  one 
deals direct ly with the in tens i ty  da ta  and  considers 
them as the structure ampli tudes of the 'Pat terson 
structure '  (see Pa r t  II). One then  uses the usual  
methods of :Fourier and  least squares ref inements  for 
obtaining the 'peaks '  Pk in this  structure. The number  
and relat ive heights of these peaks are known before- 

hand.  Thereafter,  using the relat ion tha t  p ~ = r ~ - -  
r~- r~ ,  the Pat terson structure is analyzed for the  
crystal  structure. This last par t  is facil i tated by  making  
use of vector shift  methods.  This approach el iminates 
all need for phase determinat ion by trial  and error or 
other auxi l iary  techniques.  I t  makes use only of the 
informat ion regarding the contents of the uni t  cell, 
namely,  the number  and types of atoms occurring in 
the repeating unit ,  and the in tens i ty  data.  

References 

BEEVERS, C. A. & ROBERTSON, J .  ~ .  (1950). Acta Cryst. 
3, 164. 

BUERGER, M. J. (1950). Acta Cryst. 3, 87. 
BUERGER, M. J. (1951). Acta Cryst. 4, 531. 
CT.AST~E, J. & GAY, R. (1950). J. Phys. Radium, 11, 75. 
GARRIDO, J. (1950). C. R. Acad. Sci., Paris, 231,297. 
KARTHA, G. & RAMACttANDRA_N, G. N. (1955). Acta Cryst. 

8, 195. 
McLAcELA~¢, D. (1951). Proc. Nat. Acad. Sci., Wash. 37, 

115. 
RANIACHANDRAN, G. N. & RAMA_N, S. (1956). Curr. Sci. 

25, 348. 
RAMAN, S. (1958). Proc. Ind. Acad. Sci. A, 47, 1. 
RAM~, S. (1959). Proc. Ind. Acad. Sci. A. (In press.) 
ROGERS, D. (1951)..Research, 4, 295. 

Acta Cryst. (1959). 12, 964 

Syntheses for the Deconvolution of the Patterson Function. 
Part II. Detailed Theory for Non-Centrosymmetr ic  Crystals 

BY S. R X M ~  

Department of Physics, University of Madras, Madras 25. India  

(Received 19 March 1959) 

This part contains the more detailed mathematical  portion of theory discussed in Part  I. First, the 
significance of various syntheses using as coefficients 2', IF[~,F 2, IFI, exp [ia], exp [2ia], I /F, 
IF] exp [i(~r- a)] and also products of the type F1F 2, where 2' 1 and 2' 2 are the structure amplitudes 
of two portions of a structure, is discussed. I t  is then used to work out the positions and strengths 
of the peaks in the different types of alpha and beta syntheses. The new syntheses are also compared 
with the known types of syntheses, such as the 'heavy atom-phased synthesis'. The main theoretical 
results have been verified by detailed numerical computation made with a hypothetical non-centric 
structure containing 6 atoms. 

1. Introduction 

I n  Pa r t  I, the  general principles involved in the alpha- 
and the beta- types of syntheses were discussed, and it  
was shown how it  is possible to obtain more informa- 
t ion about  a crystal  structure,  if a par t  of it (viz. 
the positions of some of the atoms) is known, making  
use of in tens i ty  da ta  alone. In  the a lpha type of syn- 
theses, a suitable funct ion of the measured in tens i ty  
is multiplied by  the structure factor of the known 

atoms for the same reflection and  the  result ing 
quan t i ty  is used as the coefficient in a Fourier  syn- 
thesis. In  the beta  syntheses, on the other hand,  a 
funct ion of the measured in tens i ty  is divided by  the  
complex conjugate of the structure factor of the known 
atoms and  then used as a coefficient in the Fourier  
syntheses. In  this paper, the detailed theory of these 
syntheses is worked out and the proofs of the various 
s ta tements  made in Par t  I are given. The theoretical  
results have been verified by  means  of numerical  
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calculation in the case of hypothetical two-dimensional 
model structures, which is presented in the last section. 

2. B a s i c  de f in i t i ons  

(a) A structure : Fg  
The notation generally follows that  in Part  I. We 

consider a crystal containing N atoms in the unit cell, 
with position vectors r~j and scattering powers f~j. 
The double subscript Nj implies that  the suffix j 
assumes all values from 1 to N; thus if the suffix Pj  
is used, j goes from 1 to P and so on. The structure 
factor of the reflection hkl whose reciprocal vector is 
H is given by 

N 

F_~= .~f~vl exp 2 z i H . r ~  (1) 
j = l  

where 
H = ha* + kb* + / c *  (2) 

and 
r ~  = x~ja + y~jb + z~jc (3) 

where x~vj, y~v~, z~v~ are the fractional coordinates of 
atom j and a, b, c, and a*, b*, c* are the real and 
reciprocal lattice vectors respectively. 

I t  is well known from Fourier transform theory that  
the electron-density distribution function in the crystal 
structure can be developed as a triple Fourier series 
whose coefficients are the structure factors F~(H). 
Thus, a set of structure factors 2'~ defines a crystal 
structure of N atoms, and so the latter structure may 
be identified with the structure factors themselves, 
and may be called 'the structure FN'. 

Now, suppose we divide the N atoms into two groups 
containing P and Q atoms respectively, and suppose 
that  Fp and FQ a r e  the structure factors (both in 
magnitude and phase) of the two parts, then we have 
the algebraic equation 

F~v=FP+Fo . (4) 

I t  is obvious that  the following equation also holds: 

Structure Fz¢ = structure ~p  + structure FQ . (5) 

This is true mathematically because of the linear 
property of the Fourier transform. Physically also, it 
is obvious, because the Fourier syntheses using Fp 
and FQ as coefficients would lead to the P- and Q- 
group of atoms, and if the two functions are super- 
posed, all the N atoms would be obtained. 

(b) Inverse structure" F*  
The inverse structure is defined to be the structure 

obtained by using the complex conjugate of Fz¢ in 
the Fourier synthesis. Clearly, if 2'~v is given by equa- 
tion (1) then 

N 

F~ = 27 f* i  exp - 2 ~i H. r 
/ '=1  

iV 

= 2 7 f y l e x p 2 7 d H . ( - - r ) ,  if f i s r e a l .  (6) 
]=1 

A complex scattering factor f arises only in the case 
of anomalous scatterers. Leaving out this case, it 
follows that  F*  is the structure amplitude of a group 
of N atoms having the same scattering factors as the 
original structure 2'~, but occurring at positions 
related to it by inversion at the origin. We shall call 
this structure the 'inverse structure' and it is obvious 
that  it is the 'structure F ~ ,  namely what would be 
obtained if F*  is used as coefficient in a Fourier 
synthesis. 

(c) Modulation of structures Fp  and FQ: FpFQ 
The modulation of one structure Fp  by another 

structure FQ is that  structure which is obtained by 
using the product F p F Q  as  the coefficient in the 
Fourier synthesis. The former consists of P atoms, 
fpj at rp I and the latter consists of Q atoms fQj at rQj. 
The product .FpFQ is obviously given by 

P Q 

FpFQ = 27 ~WfP~fQJ exp 27~iH.(rp~+rQj) . (7) 
i = 1  ] = 1  

It  is the same as the structure factor of a crystal 
whose unit cell consists of PQ atoms each of strength 
fPifql occurring at rp~-rq t .  This is what would be 
obtained ff Fp.FQ is used as coefficient in a Fourier 
synthesis. Thus the modulation of two structures is 
an interesting type of multiplication in which the 
scattering powers have to be multiplied and the coor- 
dinates have to be added. 

(d) Patterson of a structure: IFlv] 2 
The Patterson of a structure FN is the modulation 

of the structure by its inverse. Thus the Patterson is 
given by the coefficients 

IF~,I2=F~v F* = 27 27 f ~ f ~ j  exp 2~iH.  (r~.i- r~.j) 
i j 

_ 2 7 2  - f.~'i+27 .,S,f~vif~j exp 2:r, i H .  ( rv i - r~ j )  . (8) 
i i j 

i 4= j  

This equation shows that  the Patterson function 
contains a single peak of weight ,Sf~i obtained from 
the coincidence of the N vectors r i - r j  of the type 
i= j .  The remaining (N2-N)  peaks of the type i # j  
fall under two groups, each containing 1(N2-N)  peaks. 
These are at (rN~--rzcj) with respect to the single peak, 
Xf~i ,  which constitutes the origin of the Patterson 
function. Thus the two groups are related by inversion 
about the origin of the Patterson. 

(e) Squared structure" .F~ 
The squared structure is the modulation of a struc- 

ture by itself and its Fourier coefficients are given by 

F~ = .2," .,~ f~vif~v] exp 2z iH.  (r~.i q-r~-j) 
i i 

= 27 f.~.~ exp 2niH.2rivi+27 27 2fivJ.~,j 
i i 7" 

× exp 2~iH.  (r~,i+ r~j ) . (9) 
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This equation shows tha t  the squared structure con- 
sists of N peaks, each of weight f~v~ at  2r~i and 
½(N2--N) peaks, each of weight 

2f~f.,~ at r ~ , + r ~ ,  (i:~j). 

(f). Modulus structure: ]F~[ 
The complete theory of the structure whose struc- 

ture factor is equal to the modulus of F~ is rather 
difficult to work out. An approximate theory (given 
in Appendix I) shows tha t  it must be quite similar 
to the Patterson diagram, i.e., structure ]F~] ~. I t  may 
be expected to give a peak of weight (Zf~.~) ~/~ at the 
origin and (N ~'- N) peaks of weight 

½fivif~,~/(Xf~,,) ~ at r ~ i - r ~ . ,  ( i 4 j ) ,  

these being centrosymmetrically disposed about the 
single peak at the origin. 

(g) The phase-structure: exp [ialv] 
The nature of the Fourier synthesis calculated with 

just the phase term exp [iaN] as the coefficient is also 
not fully known. An approximate theory (see Appendix 
II) shows tha t  it must consist of N positive peaks, 

//Zf2 ~1/2 i.e. at the atomic each of strength g lvi, ~ J~zJ at r ~ ,  
positions of the structure Fy,  and second order 
negative peaks of strength 

--½f~f~v~f.~/(,~,f~v~) ~/~ at r~-i+r~v~-r~,~, ( j 4 k ) .  

Thus, the modulus structure would resemble the 
Patterson, while the phase structure would resemble 
the Fourier diagram. 

(h) The phase-sTtared structure" exp [i2alv] 
This is the square of the phase structure and is the 

modulation of exp [iOCg] with itself. I t  consists of N 
peaks of weight 

f~vi/.Z f~vk at 2 r ~  
k 

and ½(N 2 -  N) peaks of weight 

2f~vif.~i/.~Yf~k at r v i+ r~ i ,  i~=j. 
k 

This discussion takes into account only the positive 
peaks of the phase structure and is approximate. 

(i) Reciprocal structure: 1/FN 
This structure is obtained by using 

1/Fly = exp [--iag]/IF~vl 

as the coefficient in the Fourier series. The main 
peaks can be worked out (see Appendix III).  I t  
consists of N positive peaks at - r N ,  (i.e. at positions 
inverse to the original structure) of strength 

and second order negative peaks at  

- -  r~vi -- r.~ + rive, (j # k) 
of strength 

2 2 -- fivif ~':f ~'e/ ( ~Y, f ~',) • 
z 

To the first order, therefore, it resembles the inverse 
structure. 

I t  follows tha t  the reciprocal inverse structure 
(1/F* =- exp [i a~v]/lF~v]) will resemble the original struc- 
ture to the first order. I t  would be just the inverse 
of the reciprocal structure. 

(j) Negative inverse structure: IFN[ exp [ i (~ - aN) ]  
This is the structure obtained by changing the 

phases of the structure factors from a to ( n - a ) ,  
without changing their magnitudes. From the identi ty 

IF[ exp [ i ( ~ - a ) ] =  - [ F [  exp [ - i a ] =  - F * ,  

it follows that  it would have negative peaks at atomic 
positions corresponding to the inverse structure, the 
absolute value of each negative peak in this case being 
exactly equal to tha t  of the corresponding positive 
peak in the inverse structure. This justifies the term 
'negative inverse structure' .  The properties of this 
synthesis and of its combination with the ordinary 
Fourier hynthesis, leading to the sine synthesis, have 
been discussed by the author (Raman, 1958) in another 
connection. 

The definitions given above will be used in the suc- 
ceeding sections in connection with the new Fourier 
syntheses suggested in this paper for the deconvolu- 
tion of the Patterson function. We assume, as in Par t  I, 
tha t  the positions of P out of the total of N atoms are 
known, and we wish to find those of the remaining 
Q atoms. We shall now proceed to consider these 
syntheses and start  with the alpha class of syntheses. 

3. The  class  of a l p h a - s y n t h e s e s  

(a) The general synthesis: ( a g e n )  

We shall first investigate the nature of the Fourier 
synthesis employing the product ]FN[2Fp as coeffi- 
cients. Since [F~I 2 = F~ F~ and Fly = F p  ÷ FQ, we h a v e  

IF~T[2= (Fp+ Re)(F* + F~) 
=FpF*+FQF*Q+FpF*Q+F*F~. (11) 

Thus, 

%~.= ]F ~,]2 F p= F p ]F p] 2 ÷ ]F ~[2 F p 
(1) (2) 

2 * +FpF~+IFp]2F~ . (12) 
(3) (4) 

The coefficient used in agen, which is the product of 
IFN[ 2 and F p ,  thus consists of four terms each one of 
which is the structure factor of the modulation of two 
structures. Because of this method of looking at  the 
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Descr ip t ion  

K n o w ~  

U n w a n t e d  

Kno~vn 

U n w a n t e d  

U n w a n t e d  

U n w a n t e d  

W a n t e d  

U n w a n t e d  

Table 1. List of peaks in the alpha-general synthesis 
No. of peaks  Pos i t ion  We igh t  Des igna t ion  

P re~ fp:  X f ~  ~ 1.1 
i 

P (P~ -- P)  rpk + rpi - -  rp] fPi fP]fPk 1.2 
(i=#j) 

P rpi f_p/~if2qi 

p(Q2 _ Q) rpk  ÷ rQi--  rQ: fQifQ/fPk 
(~#j) 

P Q 2r pi - r Qk f ~yi f Q~ 

½(p2_p)Q rp i+rp~--rQk  2fpifP~fQk 
(¢#j) 

Q rq~ fQ~ Z'f ~i 
i 

(P~ -- P)Q r p i -  rp: + rQ/¢ fPi. fPi fQk 
(~*j) 

2.1 

2.2 

3.1 

3.2 

4.1 

4.2 

problem, it is possible to write down the various peaks 
which a Fourier synthesis calculated with ~ge. as the 
coefficient will contain. The peaks are listed below in 
Table 1 those which result from term (1) being de- 
signated as (1.1, 1.2 etc.) and so on. 

(b) Modified synthesis: (C¢~od) 
Out of these eight sets of peaks two of which (1.1) 

and (2.1) are superposed, only those under (4.1) refer 
to the absolute positions r Qy of the Q unknown atoms. 
They are the only wanted peaks, while all the others 
are unwanted. The unwanted background can be 
considerably reduced by modifying the coefficient 
agea and calculating the synthesis employing the co- 
efficient: 

2 2 O~oa= IF~I 2-1FPI - fQ :  IFe l  expi~p. (13) 

This modification is possible even in the most general 
case because IFel is a known quantity when the 
positions of the P atoms are known and 

2 f~: / 

is only the sum over the square of the scattering powers 
of the Q unknown atoms. This modified coefficient 
may be expressed in the form 

OCmod= [~, ~, fQ~fQ:exp 2~iH.(rQ~--rQj)] FP 
i / (2"2) 

+F~F~+IF~:FQ. (14) 
(3) (4) 

The synthesis will thus give only the peaks 2.2, 3.1, 
3.2, 4.1 and 4-2 and will have less of a background 
than the alpha-general synthesis. In particular, the 
peaks at the positions of the known atoms will be 
suppressed. 

(c) Isomorphous alpha-synthesis: (~is) 
Further reduction of the background is possible if 

a pair of isomorphous crystals are available. Let us 
consider the case when there are two crystals, 1 and 2 
say. The difference between the two crystals is that  
a group of P atoms in crystal 1 has been isomor- 
phously replaced by a group of P others in 2. Let 
F(~ ) and F ~  be the structure factors of the corre- 
sponding reflections hkl of the two crystals, and let 
F~ ) and F(~ ) be the contribution from the group of P 
replaceable atoms in each case. Then it is possible to 
derive the quantity (FpF~+FQF*) alone from the 
intensity-differences of the two crystals, provided the 
positions of the replaceable atoms are known. This 
follows from the following consideration: 

Since F ~  -- F~) + FQ, 

IF~)I2= IF~)I2 + IFQI 2 + . .  ~ ~. ~--,-.. p -. ,~. ( 1 5 )  

Also, from F(~ ) = F(~ ) + FQ, 
iE(~)[2__ ]F~)I2 + ]FQI2 + ]7(2) ~ ,  ~_ ]7(2), .~...,-. Q--r--.p FQ. (16) 

Hence, 

IF~)12-IF~)I2 = IF~) I2 - IF~) I  2 + (F~)-F(~ )) F~ 
+(F~)-F~))*~Q. (17) 

Let us denote by Fe  the contribution F(~ ) -F(~ ), the 
difference between those from the replaceable atoms 
of the two crystals. Then it is obvious from (17) that  

IFTI2-IF~v)I2-(IF(~)I2-1F(~)I2)=FpF~+ F*FQ.  (18) 

Thus the quantity on the right hand side can be ob- 
tained from an experimental measurement of 

IF(~)Iz and IF(~)le 

provided the positions of the replaceable atoms (P) 
are known, so that  IF(~)I z and IF~)I e can be calculated. 
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One can then calculate the Cqs synthesis using the 
coefficient 

~i~= {(IF(~)I2-IF(~)i~)-(IF(~)Iu-IF~)Ie)} Fp, (19) 
which can be obtained from the intensity data of the 
two crystals. 

The positions of the peaks in this synthesis may be 
obtained by using the right hand side of equation (18) 
from which it follows tha t  the coefficient is 

2 * cq~ = F pF Q + IF pIe F~ . (20) 
(3) (4) 

As indicated in equation (20) this would lead only to 
the peaks of the type 3.1, 3.2, 4.1, and 4.2 listed in 
Table 1. The relative strengths are, however, slightly 
different from what is given in Table 1. The difference 
is tha t  instead of fp~ one has to use the difference 
r(1) ¢(-~h The wanted peaks 4.1 are thus obtained JPj  --Jl-'] ~" 

against a background of 3.1, 3.2, and 4.2 only. 
I t  must be noted tha t  in the case of an isomorphous 

pair, even the predetermination of the positions of the 
P atoms is rendered easy. I t  can be done either from 
a s tudy of the Difference-Patterson diagram (Kartha 
& Ramachandran,  1955) or by using the synthesis 
employing the coefficient (IF~v~)l- IF~)I) ~, as suggested 
by Perutz (1956), for centrosymmetrie crystals. For 
non-centrosymmetric crystals also, this synthesis is 
likely to work, as has been recently shown in this 
laboratory (unpublished). 

(d) Anomalous alpha-synthesis: ( aa~) 
A more favourable case occurs when the known 

P atoms become anomalous scatterers, that  is to say, 
have complex atomic scattering factors fp~. A complex 
atomic scattering factor can be obtained by choosing 
a radiation whose wavelength lies on the short wave- 
length side of the absorption edge of the atoms P. 
I t  is well known tha t  the effect of a complex atomic 
scattering factor is to make the intensities of the pairs 
of inverse reflections hkl and ~ i  unequal and introduce 
a certain difference, say /11FI 2, between them. The 
latter  is a quant i ty  tha t  can be measured experimen- 
tally. If the positions and nature of the anomalous 
scatterers are known, then it is possible to calculate 
the anomalous imaginary vector F~', which is the 
contribution from the imaginary component iAf'p~ of 
the atomic scattering powers of the P atoms. The 
formula is 

t ,  t t  

Fe = i , ~  /1f pj exp 2~ iH. re i  . (21) 
] 

I t  is, therefore, possible to calculate a synthesis (the 
alpha-anomalous synthesis) with the coefficient 

1 2 ' "* " " ~--{~AIF~vl-(FpFp +F'p*Fp)}F e . (22) 

To understand the nature of this synthesis, let us 
suppose, as before, that  FQ is the contribution from 
the remaining Q atoms and that  F~ is the contribution 

from the real part  of the atomic scattering powers of 
the P atoms. Then 

F,v= FQ + F'p+ Fj~ (23) 
so that  

IF vl2 = Fz, F * =  IFQI" + IF~I °" + ]F~'I 2 
+(FQF'p*+F~Fp)+ ' "* " '* (FpFp + F p F p  ) 
+ (FQFp* + F~F'p'). (24) 

Denoting by a bar above the corresponding quantities 
for the inverse reflection, we have 

F ~v= FQ + F'p + F~ (25) 
so that  

] IVz,12=(FQ+Pp+P~' ) (F~+Fp*+ff~ '*  ) . (26) 

I t  is obvious that  

F Q = F ~ ,  F~=F~* ,  (27a) 
but 

F ~ ' =  - F ~ * .  (275) 

Using these relations, 

IF vl2 = levi z + IFjol 2 + IF);I 2 + (FQFp* + F~F'e) 
, , t ,  t ,  , , ,  , t ,  - ( F e F  e +FpF~,* ) - (F~Fp  + F Q F e ) .  (28) 

Thus, 

- I F s l  =2(F•Fp +FeF'p* ) 
+ 2(FQ Fp'* + F~F~) (29) 

so that  

½-(/1 [Fz.I 2 - 2(F~F~'* + F~ F~,*)} = FQF~* + F~F'p'. (30) 

The quant i ty /1  IF~I 2 can be experimentally measured 
and the quant i ty  2(FpFp +Fp Fp) can be obtained 
by calculation, provided the positions and the scat- 
tering powers of the P atoms are known. As was 
mentioned in Par t  I, the anomalous scatterers are 
invariably heavy atoms and so their positions may be 
obtained from the Patterson itself. Therefore, the left 
hand side of equation (30) can be obtained. Suppose 
now, that  this is multiplied by F~' and the product 
used as coefficient in a Fourier series, one obtains 
what might be called the ~-anomalous synthesis (c%~). 
The coefficient of this synthesis is given by equation 
(22). :From equation (30) the R.H.S. of this equation 
is given by 

t ' 2  * " 2 ~a~=Fe FQ+FQIFel .  (31) 

Thus the synthesis with c%. as coefficient will consist 
of the modulation of the square structure F~ '2 by the 
structure F~ plus the modulation of the Patterson 
IFp'I ~ by the structure FQ. Now, the structure ~,p2 
will consist of P peaks of weight ( -/1f'p'~) at 2rpi and 
½(p2_p)  peaks of weight 

--2/1f~'i/1f~' l at r~oi+rpj ( i 4 j ) ,  

while the Patterson IF~'[ 2 will consist of a single peak 
of weight 
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at the origin and ( P ~ - P )  peaks centrosymmetrically 
disposed about the origin at  r m - r p ~  (i:~j), their 
weights being A f p'i A f'~. 

Therefore the c%. synthesis will consist of PQ peaks 
of weight - f~Af~ ' i  at 2rpi--rQ~ and ½(P~-P)Q 
peaks of weight 

-2Af~'iAf~i'~fa, at r ~ + r p / - r q ~  ( i 4 j ) ,  

derived from the first term of (31) and Q (wanted 
peaks) of weight 

A ¢"2 f~: ~ ~a P~ at re/ plus (p2_ p)  Q 
i 

peaks (unwanted) of weight 

faeAfT~Afei at r e i - r p ] + r a ~  ¢. 

The positions of the peaks will be seen to be the same 
as the ~i :s tructure 3.1, 3-2, 4.1, 4.2 of Table 1, but 
the first two sets are now negative peaks. Thus the 
c%:synthesis gives the structure Q against a back- 
ground, which is par t ly  positive and par t ly  negative. 
Since some of the unwanted peaks are negative, it is 
easy to distinguish them, and also the general back- 
ground will be less than in the ai:synthesis.  

The particular case in which the P anomalous 
scatterers are all of the same kind of atom is interest- 
ing. In this case, it can be readily shown tha t  
(FpFp + Fp Fp) is zero, so tha t  

a~ .=  ½A IF~vIe.Fj. ' . (32) 

4. The  class  of b e t a - s y n t h e s e s  

(a) General beta-synthesis: (~gen) 

We will now consider the class of B-syntheses, that  
is, the syntheses of the division technique. In this case, 
the coefficient of the synthesis is the quotient of IFN[ e 
with F*. I t  is interesting to note at  the outset that  the 
very process of division reduces the unwanted back- 
ground considerably. This follows from the following 
considerations : 

969 

Using equation (l 1), the coefficient in the flgen- 
synthesis is 

l e v i  2 

= F p +  IFQIe/F * + e x p  [i2~p] F~ + FQ (33) 
(5) (6) (7) (8) 

The structure given by this synthesis consists of four 
parts (5) to (8) as in the case of agen, each of which 
can be interpreted as a modulation of the different 
s tandard structures. The first term (5) of equation (33) 
leads to the known structure P(fp:  at rp:) and the 
last term (8) leads to the required unknown structure 
Q(fQ3 at rQ~). Thus, the unwanted background is 
produced by the other two terms (6) and (7). 

The structure arising from (6) is the modulation of 
the Patterson of the Q-atoms with the reciprocal 
inverse of the P atoms. Taking only first order inter- 
actions, this would lead to the following peaks 

2 2 /  (6 .1 )  fe] 22 f Qi/ " f~,k at r~j 
i k 

f P k f ~ i f ~ i / ~ f ~  at rp~+rQ~--rQ: (i+j) (6.2) 
l 

fPif?/f?kZ 2 2 2 faf f ( .Zfp~) at r p k + r p i - r p ~  (i:~j). 
z m (6"3) 

Similarly term (7) would lead to a structure which is 
a modulation of the phase-squared structure of the 
P atoms with the inverse of the Q atoms, which would 
contain the following peaks 

f2Pif~:/Zf~k at 2rpi--rQ] (7.1) 
k 

2 f ~ i f p / f ~ / ~ f ~  ~ at rpi+r~/--rQ~ ( i ~ j ) .  (7.2) 

The number, position, and weight of the various 
peaks occurring in the flgen-synthesis are given in 
Table 2, which is similar to Table 1. The last column 
gives the designation of the corresponding peaks 
which occur in the same position in the ag~:synthesis. 
Note that  while the positions closely agree in the two 

~0 .  of 
peaks 

P 

P 

-P(Q~-Q) 

P(P~-P) 

PQ 

(p2_p)Q 

Q 

Table 2. List of peaks in the beta-general synthesis 

Position 

rPi 

rpk --~ rQi-- rQj 

(¢#2 
rpk + rp i - -  rpg 

(i4j) 

2rpi - -  rQk 

rp i  + rp j - -  rQk 

rQk 

Designa- 
Weight tion 

f~j s.x 

f pj.Sf~i/Sf~ k 6.1 

f Pk f qi f qj/ • f ~/ 6.2 

--fPi fP] fPk .~,f 2ql}/2~f ~m 6.3 

Corresponding 
peak in Table 1 

1.1 

2.1 

2.2 

1.2 

f ~ / ~ k / z / ~  7.1 3.1 

2fpifegfqk/Zf~ 7.2 3.2 

fqk 8.1 4.1 
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cases, the relative weights are in some cases different. 
Comparing the fl-general with the a-general syn- 

thesis, it is seen that the peaks corresponding to 4.2 
of age~ are absent in the former. This reduction is a 
result of the division process used in the/~ class. 

(b) Modified fl-synthesis : (flmod) 
Here again, it is unnecessary to evaluate fl~en and 

it is always possible to modify the coefficient as in 
the a-class and calculate a synthesis with the coeffi- 
cient flmod given by 

/~moa= (IFAP- IFeI~-Z'I~j) exp i ae / lFe l .  (34) 

The coefficient fl~od is equal to 

F* ~i • fQ~fQJ exp 2~ iH . ( r~ - - rQ~)  
i . . i  (6-2) 

+exp  [i2c~e] F ~ + F ~ .  
(7) (8) 

(35) 

This equation shows tha t  flmod will give only the 
unknown atoms Q but  will not contain the known 
atoms P. 

(c) Isomorphous fl-synthesis (flis) 
In  the favourable case of a pair of isomorphous 

crystals, it is possible to evaluate a synthesis with the 
coefficient 

.8~s = {(I F~,~)12 - I .~)12) - (I F(~)12 - I F(~) 12 ) } exp i a p/ tFe I 
(36) 

analogous to the a-isomorphous synthesis. 
The coefficient flisis from equation (l 8) equivalent to 

flis = FQ + exp [i2ae] F~ .  (37) 

I t  is thus obvious tha t  fits gives the structure Q against 
the background (7.1) and (7.2) alone, which again is 
superior to the ai<synthesis, as the peaks (4.2) of 
the lat ter  are suppressed. 

(d) Anomalous fl-synthesis (flan) 
In  the still more favourable case of anomalous 

scatterers, it is possible to evaluate the synthesis with 
coefficient fla~ given by 

~ = = a a n l  lF ' ;  I ~ 
= { - ~ A I F = I ' ° - ¢ - % ~ , ' e  + _ %  ± > ) ~ e x p i a ~ ' / I F ~ ' l ,  (38) 

which from equation (31) is equivalent to 

f l~.=FQ--exp [i2a~'] F~ .  (39) 

The latter  equation shows tha t  fl~,~ will give the 
required structure Q as a set of positive peaks against 
a background of the type of (7), but which is now 
negative. The background is now completely negative, 
the advantage of which is obvious. The unwanted 
peaks would show themselves up as negative peaks 

and the possibility of mistaldng a strong spurious peak 
as a structure peak is eliminated. Herein lies the 
superiority of the fl~n-synthesis over all the others 
discussed in this paper. 

I t  is interesting to note tha t  ]~is and fla, are the same 
as the isomorphous and the anomalous syntheses 
calculated by using the two possible values of the phase 
angle obtained in the ambiguous phase-determination 
by the two techniques, the isomorphous replacement 
technique, and the anomalous dispersion technique. 
The former one has been discussed by Bijvoet et al. 
(1954), Harker (1956), and Perutz (1956). The lat ter  
one has been developed by Ramachandran & Raman 
(1956) and Raman (1958). 

5. S y m m e t r y  of the  syn theses  

The symmetry  of the various syntheses discussed 
above depends upon the symmetry  of the known group 
of P atoms. The particular case which is of interest 
is when the structure is non-centrosymmetric, but  the 
group P is centrosymmetric. Then all the syntheses 
are centrosymmetric and, therefore, give diagrams 
which involve an artificial centre of inversion. In  this 
case the phase of the contribution ~p from the P- 
atoms is either 0 or ~ so tha t  F ~ =  [Fp] 2. Consequently 
the squared structure and the Patterson of the P-group 
are identical. As a result the following circumstances 
arise: 

(a) Modified a-synthesis 
I~OW, 

arnod={~ / .~, f Qi f Q, exp 27ti H . (r Q~ -- r Qj) } F p 
i (2.2) 

+ IFPI~F~+ IF~IPFQ. (40) 
(3) (4) 

I t  is obvious that  term (4) leads to the required struc- 
ture of Q atoms and the usual background of Q(p2_  p)  
peaks at rp i - - rp j+rQk.  The term (3) leads to the 
inverse structure and a background of Q(p2_  p)  peaks, 
but  at  rpj - -re i - -rQk.  I t  is obvious tha t  the two sets 
are related by inversion about the origin of the 
Patterson, which is the same as the centre of inversion 
of the group P. The term (2.2) will lead to the usual 
P ( Q e - Q )  background peaks, but these are also centric 
about the origin, whence it is clear that the synthesis 
will give the structure and a set of unwanted peaks 
and the entire set will be duplicated by inversion 
about the inversion-centre of the known group P.  

(b ) Isomorphous a-synthesis 

In this case 
~is= iFelPFQ+ 2 . ]Fel FQ (41) 

(3) (4) 

The discussion is identical with tha t  for the amod- 
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synthesis except tha t  now the peaks (2.2) will get 
suppressed. 

(c) Anomalous c¢-synthesis 
In  this case, the important  point to be noted is tha t  

~"2 _ _  

p - - I F ~ ' I  u ( 4 2 )  
whence, 

t t  2 
0¢~n= IFp I FQ-- IF~,'I2F~ (43) 

(3) (4) 

I t  is obvious tha t  (3) will lead to the structure Q 
against a background and (4) will lead to the inverse 
structure and a background. The two sets are related 
by inversion, but the second set of peaks are all nega- 
tive. Thus, the anomalous c~-synthesis gives the struc- 
ture and a certain background and both are duplicated 
by an equivalent negative series, the duplication being 
by inversion at the centre of inversion of the P-group. 

(d) Modified E-synthesis 
In  this case since exp [iap] = _+ 1 and so exp [i2ap] = 1, 

the coefficient #rood takes the form 

1 
#mod---- ~pp Z / ~ .  fQ~fQ1 exp 2xciH.(rQi--rQj) 

i .  j (6.2) 
+FQ+FS. (44) 

(7) (8) 

I t  is obvious tha t  term (7) will lead to the required 
structure of Q atoms, term (8) will lead to its inverse 
structure and term (6.2) will lead to a background 
which again is centrosymmetric about the inversion 
centre of the P atoms. Thus, the #rood synthesis in 
this case will give the structure and a certain back- 
ground, duplicated by inversion at the inversion-centre 
of the P-group. 

(e) Isomorphous #-synthesis 

In  this case, 
#is = FQ 21-/~ (45) 

from which it is clear tha t  #is gives just the structure 
duplicated by its inverse, there being no background 
whatsoever. I t  is interesting to note tha t  when the 
P-group is centric, the isomorphous #-synthesis gives 
just the structure and its inverse about the inversion- 
centre of the P-group. If the P-group is non-centric, 
the latter set of duplication peaks gets dispersed into 
a general background. 

(f) Anomalous #-synthesis 
In this case, 

#ao=FQ-F  . (46) 

This shows tha t  #an will give the structure duplicated 
by its inverse, but  the lat ter  will be negative in sign. 
Thus the structure peaks are positive, while the dupli- 

cation peaks are negative so tha t  the former can be 
easily distinguished from the latter. Here also it  may  
be noted tha t  when the P-group is non-centric, the 
duplication peaks get dispersed into a general back- 
ground. 

6. A c o m p a r i s o n  of the  different  s y n t h e s e s  

From the above discussion it follows tha t  preference 
must be given always to the fl-type of syntheses, since 
the background of any fl-synthesis is always less than 
the background of the corresponding a-synthesis. 

Among the four types of fl-syntheses, the order of 
preference is #an, flis and then flmod. The superiority 
of flan consists in its negative background. Because of 
this, there is no possibility of mistaking an atom at a 
wrong spurious peak to be a real atom. In the other 
two syntheses, the background is positive so tha t  it is 
always possible to mistake a strong spurious peak for 
a possible atomic site. The chances of such an oc- 
currence are again greater in #mod than in #is because 
of the larger background. 

However, in the absence of either anomalous scat- 
terers or an isomorphous pair of crystals the only 
course open is to calculate the #rood-Synthesis. I t  is 
interesting to compare this synthesis with the usual 
'heavy-atom'  or 'partially phased' synthesis, viz., 
IF~J exp iO~p, calculated under similar circumstances. 
The latter  procedure is very common, more so if the 
P atoms are heavy atoms. I t  is obvious tha t  this 
synthesis will be inferior to the #mod synthesis for the 
reason tha t  it  tends to emphasise the known atoms, 
while the known atoms are suppressed in the #mod 
synthesis. Thus, the synthesis employing ]F~v I exp ic~p 
as coefficients will include over and above the peaks 
of the #~od-synthesis, the known atomic peaks of the 
type (1.1) and (2.1) and also (1.2).* Of course, it 
may  be possible to remove the peaks (1.1) by taking 
as Fourier coefficients the terms (IFNI -- I FP1) exp i~p, 
but  the peaks of the type (2-1) and (1.2) will still 
persist. These, however, get eliminated in the #moa 
synthesis and hence the superiority of the latter over 
the former. 

A certain precaution must, however, be always 
taken when performing the #-class of syntheses. Since 
terms contain 1/IFp ] as a factor, some of the coeffi- 
cients become very large when IFpI  -> 0. I t  is obvious 
tha t  such terms must be omitted from the Fourier 
summation, for when ]FPI is small, the phase ap is 
indefinite. A small change in the assumed positions 
of the P atoms would produce a large change in the 
phase. As a practical proposition it is suggested tha t  
all those terms for which IFpI is less than one-fifth 
the mean value in tha t  particular range of (sin 0)/2 
be omitted from the #-synthesis summations. 

I t  may be mentioned tha t  a similar difficulty arises 

* The nature of this synthesis will be discussed in full in 
a later part. 
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even in the heavy-a tom method,  where, if the heavy  
a tom contr ibut ion tends to zero, the phase is inde- 
terminate,  and the corresponding term is best omit ted 
from the par t ia l ly  phased synthesis. No such difficulty 
occurs with the a-class of syntheses, because of the 
mul t iphca t ive  process. 

7. Choice  of the  P - g r o u p  

The success of the methods described here depends on 
the number  and nature  of the known atoms. Both 
classes of syntheses tend to present the unknown 
atoms with weights enhanced by  the factor P over 
those of the unwanted  background peaks. This alone 
m a y  make  it appear  tha t  the larger the number  of 
known atoms, the greater are the chances of success. 
But  actually,  increase of P results in an undesirable 
increase in the number  of unwanted  peaks and there- 
fore in the possibil i ty of some of them coming together 
and standing out as a strong peak, comparable to a 
wanted  structure peak. Thus the most favourable case 
is a small  group of heavy  atoms for the P-group. 
However, if all the atoms are equal then  it m a y  be 
bet ter  to have a small  P than  a large one. The number  
of unwanted  peaks is small  if either P is small, or 
when P is very  large, and is largest when P =  ½N. 
As the la t ter  is impract ical  one is forced to prefer a 
small  P, say 3 or 4. I t  is preferable tha t  the syntheses 
are evaluated in three dimensions so tha t  the number  
of chance coincidences of the unwanted  peaks is 
reduced. 

8. Ver i f i ca t ion  

The above conclusions have been verified with hypo- 
thetical  two-dimensional model structures. The model 
proposed consisted of a non-centric disposition of six 
atoms, all of uni t  strength. The symmet ry  of the 
configuration is tha t  of the space-group P1 though the 
axes have been taken  to be equal and orthogonal for 
the purpose of easy computat ion.  The unit-cell  edge 
was divided into ten equal parts  and the atomic co- 
ordinates were specified on the basis of this  unit ,  
tha t  is, one ten th  of the cell, so tha t  the structure 
factors were all periodic with period 10. The positions 
of the known (P) and unknown (Q) atoms are given 
in Table 3. The complex structure factors were eval- 
uated and these were then used to calculate the co- 
efficients of the various syntheses. 

At first, the position of the three P atoms were 
assumed to be known and the isomorphous ~-s3mthesis 

Table 3. Coordinates of the known (P) and the unknown 
(Q) atoms in the unit cell 

T h e  n u m b e r s  g iven  a re  f r a c t i o n a l  c o o r d i n a t e s ,  
in  m u l t i p l e s  of 1/10 of t h e  cell  edge  

A t o m  x y 

P - g r o u p  : 

1 0 0 
2 2 4 
3 7 5 

Q-group  : 

4 6 1 
5 9 4 
6 5 7 

0 

0 0.02 
(o) 

1 1.03 
(1) 

2 0.01 
(0) 

3 2.04 
(2) 

4 0.01 
(0) 

5 0.03 
(0) 

6 0.01 
(0) 

7 1-03 
(1) 

8 0.01 
(0) 

9 0.03 
(0) 

Table 4. Test of the isomorphous a-synthesis 

T h e  c a l c u l a t e d  v a l u e s  a re  g iven  a t  i n t e r v a l s  of 0.1 of t he  u n i t  cell. 
T h e  q u a n t i t i e s  in b r a c k e t s  s h o w n  be low are  t he  t h e o r e t i c a l l y  e x p e c t e d  value.~ 

1 2 3 4 5 6 7 8 9 

0.06 -- 0-02 0.000 -- 0.038 2.00 1.00 0.02 1-02 0-06 
(o) (o) (o) (o) (2) (i) (o) (1) (o) 

-- O. lO 1.03 -- 0.08 2.00 -- 0.04 1.00 O.O1 1.02 -- 0-02 
(0) (I) (0) (2) (0) (1) (0) (I) (0) 

0.02 0.97 -- 0.04 -- 0.03 -- 0-08 -- 0-04 0.02 2.06 1.02 
(0) (I) (0) (0) (0) (0) (0) (2) (I) 

0.06 - -0 .01  1.00 0.05 0.00 1.00 - -0 .02  1.98 0.10 
(0) (0) (1) (0) (0) (I) (0) (2) (0) 

0.02 2.01 1.02 -- 0.03 1.00 0.00 0-97 0.06 1.02 
(0) (2) (1) (0) (1) (0) (1) (0) (1) 

-- 0.06 -- 0.01 1.00 1.03 0.00 1.00 3.02 0.02 -- 0.02 
(0) (0) (1) (1) (0) (1) (3) (0) (0) 

3.02 -- 0.03 2.00 -- 0.03 0.00 0.00 0.02 0-02 1-06 
(3) (0) (2) (0) (0) (0) (0) (0) (1) 

1-06 -- 0.01 -- 0.04 - -0 .01  -- 0.04 0.00 2-02 0.02 0.02 
(1) (0) (0) (0) (0) (0) (2) (0) (0) 

1-98 1.05 -- 0.04 -- 0.02 0.96 0.00 0.98 0.06 0-98 
(2) (1) (0) (0) (0) (0) (1) (0) (1) 

0.94 -- 0-01 1.00 3.00 0-00 1.04 -- 0-02 0-02 0.02 
(I) (0) (I) (3) (0) (I) (0) (0) (0) 
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T a b l e  5. Test of the isomorphous fl-synthesis 

The ca lcula ted  values  are given a t  in tervals  of 0.1 of the  uni t  cell. The posi t ions of the  Q-a toms  are indica ted  b y  rings a r o u n d  
the  corresponding numbers .  The  theore t ica l ly  expec ted  spurious peaks  are indicated b y  symbol s  (a) and  (b), which s t and  for  

those  l isted under  (7.1) and  (7.2) respect ive ly  in Table  2 

x•Y 3 4 5 6 7 8 9 0 1 2 

0 --0.7 --0.4 --1.9 --2.2 --1.7 5.2 --1-5 --0-8 0.3 0.2 
(a) 

1 0.3 --2.0 --0.4 5-2 0-4 3.4 --2.2 0.5 1-2 
(a) (b) 

2 1.2 0.4 --0.3 0.2 0.1 --0-4 - -2 .0  1.6 3.6 --2.8 
(b) 

3 4.0 0.8 --1.6 --0.6 0-3 0.8 0.6 0.4 4.5 --0.3 
(a) (b) 

4 --0.2 0.9 4.0 1.4 --0.7 --1.2 0.8 1-2 0.2 1.4 
(a) (b) 

5 0.6 1-6 --2.0 2.2 1.6 0.6 2.1 10 .4[  - -0.4 --0-1 
(b) (b) (b) 

! 

I 11-2 0.3 3-2 0.0 --1.6 --1.6 --1.2 --0-4 --1.6 6 I O ~ 4 

(a) 
7 --2.4 0.4 0.2 --0.3 --0.5 0"5 1.6 4.0 0.9 - -2 .0  

(a) 

8 0.8 3.2 1-2 1.0 --0.1 --0.8 --0.4 2.2 --0.4 0.4 
(a) (b) (b) 

9 - 1 . 2  2.4 --2.0 2-4 ~ 0.0 --1.6 - -0 .4  --1.2 I O~ 3 

(b) (b) 

Table 6. Modulus synthesis of the Q-atoms 
The peaks  corresponding to the  P a t t e r s o n  are indica ted  b y  rings, the  origin peak  b y  a double  ring. No te  the  v e r y  low b a c k g r o u n d  

elsewhere,  the  more  p rominen t  of which is negat ive .  The expec ted  rat io  of first  order  non-origin to origin peak  is 

x• 0 1 2 3 4 5 6 7 8 9 

o o o o o o o 

- o . ~  - o . ~  o - o . ~  I ~-~ I - o . ~  - o . ~  - o . ~  o o 

o o o o.~ o o o o.~ o - o . ~  

- o . ~  o o f ~ . ~  J o o - o . ~  o o o 

o o.~ o o o.~ - o . ~  -o.~ [~'~ I o o 

5 0 -- 0.8 0 -- 0.4 -- 0.2 0.2 -- 0.2 -- 0.4 0 -- 0:4 

6 0 0 0 I 2.4 I - -0 .4 --0.2 - -0 .4  0 0 0.4 

7 --0.8 0 0 0 --0.8 0 0 [ 2.4 [ 0 0 

8 0 - -0 .4  0 0.4 0 0 0 0.4 0 0 

9 - -0 .4  0 0 --0.4 --0-4 --0-2 I 2.8 I --0.4 0 --0.4 

was calculated. As expected, the synthesis gave the 
three unknown atoms, each of weight 3 against a 
background of twenty seven points of weight 1 and 
nine points of weight 2. The agreement between the 
numerically calculated and theoretically expected 
values was exact as regards the weight as well as the 
positions of the various points. These values are given 

in Table 4. The deviations in the third significant 
figure are due to rounding off errors. 

Next the isomorphous fl-synthesis was calculated. 
This synthesis gave the three wanted peaks against 
a much reduced background of eighteen peaks only. 
The results are shown in Table 5. Theory and calcula- 
tions agreed only in tha t  there should be three major 

A C 12 65 
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Table 7. Phase synthesis of the Q-atoms 
The peaks a t  the  assumed a tomic  posit ions are shown by  solid rings. The negat ive  peaks expected f rom theo ry  are ind ica ted  

by  broken rings. Note  the low background  elsewhere 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

0 1 2 3 

-02  - 02 02 -01  

- 0 5  - 0 4  05 04 

- 02 06 Ol 03 

- 0 2  - 0 5  Ol - 0 4  

- o l  - O l  0 6  - 04 

--02 Ol -- Ol 02 

--01 I 551 --02 01 

00 00 05 --01 
. . . . . . . . . . . .  

-- 19i --02 --02 01 
. . . . . . . . . . . . .  

--01 09 00 03 

4 

01 

O2 
. . . . . . . . . . . . . .  

--16 
. . . . . . . . . . . . . .  

- -  02 

--03 

--04 

10 

--01 

- -  02 

1521 

5 6 7 

- -  02 04 - -  02 

02 00 01 

02 --01 -- 04 

--01 --02 --03 

06 02 01 

02 --02 I 52 [ 

00 --01 --02 

--06 --08 01 

02 --02 04 

02 Ol --01 

8 

--18 

- -  02 

--03 

--02 

02 

--01 

--02 

--04 

Ol 

- -  02 

9 

--05 

--02 

--04 

--01 

02 

--06 

--06 

- -  02 

00 

--02 

peaks a t  the  wan ted  positions and eighteen minor 
peaks a t  the  expected unwanted  positions, but  not  as 
to the  weights of the various peaks.  Surprisingly it  
was found t h a t  the  rat io of the  unwanted  to the  wanted  
peaks was much less t h a n  the  expected value of ½ 
and §. The reason for this is t h a t  in the  theoretical  
discussion, we have  ignored the  negat ive second order 
te rms of the  phase structure.  The effect of this is 
apparen t ly  to interfere with the general background 
and reduce it further .  The numerical  calculation of a 
phase synthesis with exp ic~p as coefficient indicated 
t h a t  there are minor negat ive peaks a t  the expected 
second order positions and this confirms the  above 
conclusion to some extent .  The details are not  given 
here. Anyway ,  the numerical  check confirms the state- 
ment  made  earher  t h a t  it  is more difficult to work out 
the  na ture  of theft-class of syntheses to the same degree 
of exact i tude as the  ~-class of syntheses. However,  the 
computa t ion shows tha t  the  required peaks show up 
quite prominent ly  in the  ft-synthesis, in fact  more 
prominent ly  t han  in the  a-synthesis .  The isomorphous 
/if-synthesis was also tested in another  model with four 
known atoms and two unknown atoms. Here again, 
there were prominent peaks at the expected positions 
and the ratio of unwanted to wanted peaks was less 
than what is given by elementary theory. 

No numerical calculations were made to verify the 
anomalous E-synthesis. But an experimental verifica- 
tion has been already given in the application of the 
anomalous dispersion method to L(+ )-ephedrine hy- 
drochloride (Ramachandran & l~aman (1956), Raman 
(1958)). The phase and modulus syntheses of the 
Q atoms of Table 3 were also made and are given in 
Tables 6 and 7. These indicate good agreement with 
theory, and confirm that the first order peaks in the 
former case occur in the same positions as in the simple 

Fourier  and in the  la t te r  in the  same positions as in 
the  simple Pa t t e r son  synthesis.  

A P P E N D I X  I 

N a t u r e  o f  t h e  m o d u l u s  s t r u c t u r e :  [ F N I  

We shall omit the subscript  N for convenience in 
these appendices. We have  

N N N 
I F l v l 2 = 2 " f 2 + . X  .Xfjf*exp2~riH.(rj-rk).  (I-l)  

i = I  j = l  k = l  
j 4 : k  

Now [FNI = ( IFN]2 )  1/2 and so we m a y  take  the  square  
root  of the  above expression and expand  it by  the  
binomial theorem, assuming the  first  t e rm to be large 
compared with the second. This is not  ma themat ica l ly  
quite valid, bu t  a sort of justification can be given 
from the fact  t ha t  when a Fourier  synthesis is per- 
formed with the  above coefficient, the  origin peak  
given by  the first te rm is much stronger than  any  of 
the  peaks given by  the second term.  I t  is hoped to be 
able to just i fy the procedure adopted here by  a full 
ma themat ica l  theory  a t  a later  date.  However,  it  m a y  
be mentioned tha t  the results derived below have been 
tested numerical ly on examples and found to be in 
agreement  with the  calculations: 

Thus, 

iFlvl=(Z f2)x/2[1 1 2" , l 1/2 +V--~.~ "fjf k exp 2 ~ i H  2 : j i  j . k  " ( r J -  rk)] 

1 _.y 2. f j f *  exp 2 ~ i H . ( r j - - r k )  

1 t 8S~v ~y'~vfJ~ e x p 2 ~ i H . ( r j - - r k )  + . . .  
~'4=k 

(1-2) 
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where V N -11/2 

Equation (I.2) shows tha t  a Fourier synthesis em- 
ploying IFz¢] as the coefficient will give a peak of 
weight SN at the origin and (N 2 -  N) peaks of weight 
½fff~/SN at r j - - r~  centrosymmetrically disposed about 
the origin and a series of higher order peaks, alternately 
positive and negative. The strengths of the higher 
order peaks decrease rapidly, and they are, therefore, 
not significant and have not been considered. How- 
ever, some of them may occur together at the origin 
or at the positions of the lower order peaks and thus 
slightly modify the strengths of the latter. This part  is 
also difficult to work out and is reserved for the more 
detailed theory. 

As a first approximation, therefore, we find tha t  the 
structure IF~[ consists of the following peaks: 

SN at 0 

and fff~/2S~v at r j - - r~  ( j#k) .  
I t  is interesting to note tha t  the ratio of the strengths 
of a non-origin peak and the origin peak is fjfk/2S~v, 
which is half the ratio found in the Patterson diagram, 
namely fjfk/S2~v. In this respect, the modulus synthesis 
differs from the Patterson synthesis, although to a 
first order of approximation the peaks occur in the 
same places in both cases. 

A P P E N D I X  II 

Nature  of the phase  s tructure:  exp i c ~  

We shall work out the nature of the phase synthesis, 
making use of our knowledge of the modulus synthesis. 
Since it follows tha t  the modulation of the modulus 
structure (IFNI) by the phase structure (exp icoN) must 
lead just to the original structure, viz., atoms fj at  r j ;  
thus, the phase structure must first of all consist of 
N peaks of strength fj/SN at rl  so tha t  the modulation 
of these with the origin peak of strength SN of the 
modulus structure will give the required peaks at rj. 

However, the modulation of these peaks with 
the non-origin peaks of the modulus structure will 
lead to N(N2-N) second order peaks of strength 
½fjfkfz/S} at rj + r~-- rl (k # 1), which are not present 
in the F~-structure. Therefore, the phase-structure 
must  consist of second order negative peaks 

at rl-t- r~-- r z 

i.e. of strength -½fjfkfi/S~v, so tha t  their modulation 
with the origin peak of strength S~ will result in just 
the right number of peaks of the right strength to 
annul the former unwanted set. 

This argument may be continued for working out 
still higher order peaks if necessary. However, since 
the modulus structure is itself only known to the 
second order, this is not worthwhile. Thus, as a first 
approximation, the structure exp ice consists of the 
following peaks: 

fi/SN at rj  

--½fjfkfi/S~ at r i + r ~ - - r  ~ (k# l ) .  

The phase-squared structure may  be obtained by 
squaring the phase structure and its peaks have been 
listed in section 2. 

A P P E N D I X  III 

Nature  of rec iprocal  s tructure:  1/FN 

Jus t  as in the case of the phase structure, we shall 
make use of the result 

1/F. [FJ2=F * 

i.e. the modulation of the Patterson structure by the 
reciprocal structure leads to the inverse structure, i.e., 
peaks of strength fj at - r j .  Now the Patterson consists 
of an origin peak of strength S~v and peaks of strength 
fkfl at r~ - r~ .  Thus the reciprocal structure must first 
of all contain peaks of strength f]/S~ at - r #  which 
on modulation with the origin peak of the Patterson 
leads to the required peaks. However, its modulation 
by the non-origin peaks of the Patterson leads to false 
positive peaks of strength f]fkfi/S~ at -- r j +  rk-- rl, 
to cancel which, there must be negative peaks of 
strength --fjfkfi/S~ at -- r j +  rk-- r~ in the reciprocal 
structure. These negative peaks combining with the 
origin peak of the Patterson will give a negative 
contribution to the electron-density distribution, 
which will exactly cancel the false positive peaks 
mentioned above. 

Thus to a first order of approximation, the reciprocal 
structure 1/F consists of the following peaks: 

f]/S~ at - r j  

--fjfkfi/S~ at - - r j + r k - - r  l (k#l). 
Its principal peaks occur at  the positions corre- 

sponding to the inverse structure, with additional 
minor negative peaks. 

I t  is obvious tha t  the structure obtained by using 
1/F* as coefficient would closely approximate to the 
original structure F~ and tha t  its main peaks will be 
as follows: 

/ 2 fjiS~v at rj 

-fjfkfJS~, at r i + r k - r  ~ (k#l). 
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